Sifat-sifat Pada Notasi Sigma Selain bentuk umum di atas, Notasi ini juga memiliki beberapa sifat yang bisa digunakan untuk menyelesaikan soal-soal yang cukup rumit. Kamu bisa menggunakan sifat-sifat sigma di bawah ini dalam menyelesaikan soal sigma.
Contoh Soal dan Pembahasan 1. Diberikan bentuk dari sebuah pernyataan Tentukan hasil
Untuk mengerjakan soal di atas, kamu bisa menggunakan salah sifat dari sigma. Kamu bisa memecah soal tersebut menjadi dua bagian seperti di bawah ini.
Dikarenakan bentuk
berbeda dengan bentuk pernyataan
Maka kamu harus mengubah bentuk
dengan cara menghilangkan konstanta -2 seperti di bawah ini.
Sehingga penyelesaian akhirnya akan seperti di bawah ini.
2. Diberikan sebuah pernyataan
Berapakah hasil dari pernyataan tersebut
Untuk mengerjakan soal di atas, kamu bisa memecah soal tersebut menjadi bentuk yang lebih sederhana menggunakan sifat operasi sigma.
3. Diberikan sebuah bentuk Tentukan hasil dari bentuk operasi sigma tersebut
Untu mengerjakan soal di atas, maka kamu harus menggunakan cara manual karena lebih cepat jika dibandingkan dengan penyederhanaan.
4. Diberikan sebuah deret 1 – 5 + 9 – 13 + 17 – …… + 130 – 133. Tentukan bentuk sigma dari deret tersebut Untuk mengerjakan soal di atas, kamu harus memperhatikan deret di atas. Deret di atas memiliki pertama = 1 dan memiliki beda = 4.
Namun setiap suku genap memiliki nilai minus. Langkah awal yang perlu dilakukan adalah mencari jumlah banyak suku dalam deret tersebut menggunakan rumus deret aritmatika.
Un = a + (n-1)b
133 = 1 + (n-1)4
133 – 1 = (n-1)4
132 = 4n – 4
4n = 132 + 4
N = 34
Jumlah suku dalam deret tersebut adalah 34. Langkah selanjutnya adalah mencari bentuk suku ke-n pada deret tersebut.
Un = a + (n-1)b
Un = 1 + (n-1)4
Un = 1 + 4n – 4
Un = 4n -3
Seperti dijelaskan sebelumnya jika suku kedua memiliki nilai negatif, maka untuk rumusnya perlu dikalikan dengan -1 yang menyesuaikan dengan suku dari deret tersebut. Sehingga kamu bisa menuliskan bentuk suku ke-n seperti di bawah ini beserta dengan bentuk sigmanya.
5. Diberikan sebuah deret -4 – 2 + 0 + 2 + 4 + 6 + …… + 26. Tentukan bentuk sigma dari deret tersebut Pertama yang perlu kamu lakukan adalah memperhatikan suku awal dan beda dari deret tersebut. Deret tersebut memiliki suku awal = -4 dan memiliki beda = 2. Sehingga kamu bisa mencari banyak suku pada deret tersebut.
Un = a + (n-1)b
26 = -4 + (n-1)2
26 = -4 + 2n – 2
26 = 2n – 6
2n = 32
N = 16
Setelah kamu mengetahui jumlah suku dalam deret tersebut, maka kamu bisa mencari rumus suku ke-n dari deret tersebut.
Un = a + (n-1)b
Un = -4 + (n-1)2
Un = -4 + 2n – 2
Un = 2n – 6
Kamu bisa mengubah bentuk dari rumus suku ke-n menjadi bentuk sigma dari deret tersebut seperti di bawah ini.
6. Diberikan sebuah notasi dengan bentuk Tentukan bentuk sigma yang ekuivalen dengan bentuk tersebut.
Untuk mengerjakan soal di atas, kamu bisa menggunakan salah satu sifat bentuk sigma seperti di bawah ini.
Sehingga bentuk soal di atas bisa di ubah mengikuti aturan sifat sigma.
Jadi bentuk sigma yang ekuivalen dengan bentuk adalah
7. Jika diberikan sebuah bentuk
Untuk mengerjakan soal di atas, kamu bisa menyederhanakan soal tersebut menjadi seperti di bawah ini.
8. Diberikan sebuah bentuk sigma Buatlah bentuk sigma tersebut menjadi lebih sederhana
Kamu bisa menggunakan sifat operasi sigma seperti di bawah ini untuk mengerjakan soal di atas.
Kamu bisa menambahkan angka dua, sehingga proses pengerjaannya menjadi seperti di bawah ini
Maka:
Tidak ada komentar:
Posting Komentar